Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Onco Targets Ther ; 16: 695-702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635751

RESUMEN

GOT2 is at the nexus of several critical metabolic pathways in homeostatic cellular and dysregulated cancer metabolism. Despite this, recent work has emphasized the remarkable plasticity of cancer cells to employ compensatory pathways when GOT2 is inhibited. Here, we review the metabolic roles of GOT2, highlighting findings in both normal and cancer cells. We emphasize how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT2 is inhibited. We close by using this framework to discuss key considerations for future investigations into cancer metabolism.

2.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214913

RESUMEN

Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.

3.
Nat Metab ; 4(6): 724-738, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35726024

RESUMEN

Stress-adaptive mechanisms enable tumour cells to overcome metabolic constraints under nutrient and oxygen shortage. Aspartate is an endogenous metabolic limitation under hypoxic conditions, but the nature of the adaptive mechanisms that contribute to aspartate availability and hypoxic tumour growth are poorly understood. Here we identify GOT2-catalysed mitochondrial aspartate synthesis as an essential metabolic dependency for the proliferation of pancreatic tumour cells under hypoxic culture conditions. In contrast, GOT2-catalysed aspartate synthesis is dispensable for pancreatic tumour formation in vivo. The dependence of pancreatic tumour cells on aspartate synthesis is bypassed in part by a hypoxia-induced potentiation of extracellular protein scavenging via macropinocytosis. This effect is mutant KRAS dependent, and is mediated by hypoxia-inducible factor 1 (HIF1A) and its canonical target carbonic anhydrase-9 (CA9). Our findings reveal high plasticity of aspartate metabolism and define an adaptive regulatory role for macropinocytosis by which mutant KRAS tumours can overcome nutrient deprivation under hypoxic conditions.


Asunto(s)
Ácido Aspártico , Neoplasias Pancreáticas , Línea Celular Tumoral , Humanos , Hipoxia , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
5.
Sci Adv ; 6(41)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33036978

RESUMEN

Tumor environment influences anticancer therapy response but which extracellular nutrients affect drug sensitivity is largely unknown. Using functional genomics, we determine modifiers of l-asparaginase (ASNase) response and identify thiamine pyrophosphate kinase 1 as a metabolic dependency under ASNase treatment. While thiamine is generally not limiting for cell proliferation, a DNA-barcode competition assay identifies leukemia cell lines that grow suboptimally under low thiamine and are characterized by low expression of solute carrier family 19 member 2 (SLC19A2), a thiamine transporter. SLC19A2 is necessary for optimal growth and ASNase resistance, when standard medium thiamine is lowered ~100-fold to human plasma concentrations. In addition, humanizing blood thiamine content of mice through diet sensitizes SLC19A2-low leukemia cells to ASNase in vivo. Together, our work reveals that thiamine utilization is a determinant of ASNase response for some cancer cells and that oversupplying vitamins may affect therapeutic response in leukemia.


Asunto(s)
Antineoplásicos , Leucemia , Animales , Antineoplásicos/uso terapéutico , Asparaginasa/metabolismo , Asparaginasa/farmacología , Asparaginasa/uso terapéutico , Dieta , Leucemia/tratamiento farmacológico , Proteínas de Transporte de Membrana , Ratones , Tiamina/farmacología
6.
Nat Chem Biol ; 16(12): 1351-1360, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32778843

RESUMEN

Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.


Asunto(s)
Cistina/metabolismo , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Tetrahidrofolato Deshidrogenasa/genética , Antineoplásicos/farmacología , Antioxidantes/farmacología , /farmacología , Carbolinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cistina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Ferroptosis/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Perfilación de la Expresión Génica , Humanos , Células Jurkat , Peroxidación de Lípido/efectos de los fármacos , Metotrexato/farmacología , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tetrahidrofolato Deshidrogenasa/metabolismo , Vitamina E/farmacología
7.
Cell Metab ; 31(4): 852-861.e6, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268116

RESUMEN

Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response (ISR) that enables cell survival under nutrient stress. The mechanisms by which ATF4 couples metabolic stresses to specific transcriptional outputs remain unknown. Using functional genomics, we identified transcription factors that regulate the responses to distinct amino acid deprivation conditions. While ATF4 is universally required under amino acid starvation, our screens yielded a transcription factor, Zinc Finger and BTB domain-containing protein 1 (ZBTB1), as uniquely essential under asparagine deprivation. ZBTB1 knockout cells are unable to synthesize asparagine due to reduced expression of asparagine synthetase (ASNS), the enzyme responsible for asparagine synthesis. Mechanistically, ZBTB1 binds to the ASNS promoter and promotes ASNS transcription. Finally, loss of ZBTB1 sensitizes therapy-resistant T cell leukemia cells to L-asparaginase, a chemotherapeutic that depletes serum asparagine. Our work reveals a critical regulator of the nutrient stress response that may be of therapeutic value.


Asunto(s)
Asparagina/biosíntesis , Aspartatoamoníaco Ligasa/metabolismo , Leucemia , Proteínas Represoras/fisiología , Animales , Asparagina/deficiencia , Línea Celular Tumoral , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Leucemia/metabolismo , Leucemia/patología , Ratones Endogámicos NOD , Ratones SCID , Transcripción Genética
8.
Mol Metab ; 33: 67-82, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31926876

RESUMEN

BACKGROUND: Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While these dependencies may be in part due to the nutrient environment of tumors, mutations or expression changes in metabolic genes also reprogram metabolic pathways and create addictions to extracellular nutrients. SCOPE OF REVIEW: This review summarizes the major nutrient dependencies of cancer cells focusing on their discovery and potential mechanisms by which metabolites become limiting for tumor growth. We further detail available therapeutic interventions based on these metabolic features and highlight opportunities for restricting nutrient availability as an anti-cancer strategy. MAJOR CONCLUSIONS: Strategies to limit nutrients required for tumor growth using dietary interventions or nutrient degrading enzymes have previously been suggested for cancer therapy. The best clinical example of exploiting cancer nutrient dependencies is the treatment of leukemia with l-asparaginase, a first-line chemotherapeutic that depletes serum asparagine. Despite the success of nutrient starvation in blood cancers, it remains unclear whether this approach could be extended to other solid tumors. Systematic studies to identify nutrient dependencies unique to individual tumor types have the potential to discover targets for therapy.


Asunto(s)
Metabolismo Energético/genética , Neoplasias Hematológicas/dietoterapia , Metaboloma/genética , Nutrientes/uso terapéutico , Proliferación Celular/genética , Neoplasias Hematológicas/sangre , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Nutrientes/metabolismo , Microambiente Tumoral/genética
9.
Nat Cancer ; 1: 653-664, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569544

RESUMEN

Cancer cells adapt their metabolic activities to support growth and proliferation. However, increased activity of metabolic enzymes is not usually considered an initiating event in the malignant process. Here, we investigate the possible role of the enzyme serine hydroxymethyltransferase-2 (SHMT2) in lymphoma initiation. SHMT2 localizes to the most frequent region of copy number gains at chromosome 12q14.1 in lymphoma. Elevated expression of SHMT2 cooperates with BCL2 in lymphoma development; loss or inhibition of SHMT2 impairs lymphoma cell survival. SHMT2 catalyzes the conversion of serine to glycine and produces an activated one-carbon unit that can be used to support S-adenosyl methionine synthesis. SHMT2 induces changes in DNA and histone methylation patterns leading to promoter silencing of previously uncharacterized mutational genes, such as SASH1 and PTPRM. Together, our findings reveal that amplification of SHMT2 in cooperation with BCL2 is sufficient in the initiation of lymphomagenesis through epigenetic tumor suppressor silencing.


Asunto(s)
Glicina Hidroximetiltransferasa , Linfoma , Proliferación Celular/genética , Epigénesis Genética , Glicina Hidroximetiltransferasa/genética , Humanos , Linfoma/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética
10.
Proc Natl Acad Sci U S A ; 116(16): 7957-7962, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30923116

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) remains an incurable childhood brain tumor for which novel therapeutic approaches are desperately needed. Previous studies have shown that the menin inhibitor MI-2 exhibits promising activity in preclinical DIPG and adult glioma models, although the mechanism underlying this activity is unknown. Here, using an integrated approach, we show that MI-2 exerts its antitumor activity in glioma largely independent of its ability to target menin. Instead, we demonstrate that MI-2 activity in glioma is mediated by disruption of cholesterol homeostasis, with suppression of cholesterol synthesis and generation of the endogenous liver X receptor ligand, 24,25-epoxycholesterol, resulting in cholesterol depletion and cell death. Notably, this mechanism is responsible for MI-2 activity in both DIPG and adult glioma cells. Metabolomic and biochemical analyses identify lanosterol synthase as the direct molecular target of MI-2, revealing this metabolic enzyme as a vulnerability in glioma and further implicating cholesterol homeostasis as an attractive pathway to target in this malignancy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Tronco Encefálico , Glioma , Transferasas Intramoleculares/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Neoplasias del Tronco Encefálico/enzimología , Neoplasias del Tronco Encefálico/metabolismo , Colesterol/metabolismo , Glioma/enzimología , Glioma/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo
11.
Nature ; 567(7746): 118-122, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760928

RESUMEN

Cholesterol is essential for cells to grow and proliferate. Normal mammalian cells meet their need for cholesterol through its uptake or de novo synthesis1, but the extent to which cancer cells rely on each of these pathways remains poorly understood. Here, using a competitive proliferation assay on a pooled collection of DNA-barcoded cell lines, we identify a subset of cancer cells that is auxotrophic for cholesterol and thus highly dependent on its uptake. Through metabolic gene expression analysis, we pinpoint the loss of squalene monooxygenase expression as a cause of cholesterol auxotrophy, particularly in ALK+ anaplastic large cell lymphoma (ALCL) cell lines and primary tumours. Squalene monooxygenase catalyses the oxidation of squalene to 2,3-oxidosqualene in the cholesterol synthesis pathway and its loss results in accumulation of the upstream metabolite squalene, which is normally undetectable. In ALK+ ALCLs, squalene alters the cellular lipid profile and protects cancer cells from ferroptotic cell death, providing a growth advantage under conditions of oxidative stress and in tumour xenografts. Finally, a CRISPR-based genetic screen identified cholesterol uptake by the low-density lipoprotein receptor as essential for the growth of ALCL cells in culture and as patient-derived xenografts. This work reveals that the cholesterol auxotrophy of ALCLs is a targetable liability and, more broadly, that systematic approaches can be used to identify nutrient dependencies unique to individual cancer types.


Asunto(s)
Apoptosis , Colesterol/metabolismo , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patología , Estrés Oxidativo , Escualeno/metabolismo , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular , Colesterol/biosíntesis , Código de Barras del ADN Taxonómico , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/metabolismo , Femenino , Humanos , Hierro/metabolismo , Linfoma Anaplásico de Células Grandes/enzimología , Masculino , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Receptores de LDL/genética , Receptores de LDL/metabolismo , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Adulto Joven
12.
Nat Cell Biol ; 20(10): 1228, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30089842

RESUMEN

In the version of this Letter originally published, the competing interests statement was missing. The authors declare no competing interests; this statement has now been added in all online versions of the Letter.

13.
Nat Cell Biol ; 20(7): 775-781, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29941933

RESUMEN

As oxygen is essential for many metabolic pathways, tumour hypoxia may impair cancer cell proliferation1-4. However, the limiting metabolites for proliferation under hypoxia and in tumours are unknown. Here, we assessed proliferation of a collection of cancer cells following inhibition of the mitochondrial electron transport chain (ETC), a major metabolic pathway requiring molecular oxygen5. Sensitivity to ETC inhibition varied across cell lines, and subsequent metabolomic analysis uncovered aspartate availability as a major determinant of sensitivity. Cell lines least sensitive to ETC inhibition maintain aspartate levels by importing it through an aspartate/glutamate transporter, SLC1A3. Genetic or pharmacologic modulation of SLC1A3 activity markedly altered cancer cell sensitivity to ETC inhibitors. Interestingly, aspartate levels also decrease under low oxygen, and increasing aspartate import by SLC1A3 provides a competitive advantage to cancer cells at low oxygen levels and in tumour xenografts. Finally, aspartate levels in primary human tumours negatively correlate with the expression of hypoxia markers, suggesting that tumour hypoxia is sufficient to inhibit ETC and, consequently, aspartate synthesis in vivo. Therefore, aspartate may be a limiting metabolite for tumour growth, and aspartate availability could be targeted for cancer therapy.


Asunto(s)
Ácido Aspártico/metabolismo , Proliferación Celular , Metabolismo Energético , Neoplasias/metabolismo , Hipoxia Tumoral , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Humanos , Metabolómica/métodos , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Transducción de Señal , Factores de Tiempo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
14.
Mol Cell ; 64(5): 856-857, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912096

RESUMEN

In this issue, Fan et al. (2016) show that oncogenic tyrosine kinases can promote glycolysis by phosphorylating and stabilizing the tetrameric form of mitochondrial acetyl-coA acetyltransferase 1 (ACAT1). The authors further identify a small molecule ACAT1 inhibitor that displays anti-cancer effects.


Asunto(s)
Acetil-CoA C-Acetiltransferasa , Proteínas Tirosina Quinasas , Glucólisis , Humanos , Mitocondrias , Neoplasias
15.
Biochim Biophys Acta ; 1857(8): 1167-1182, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26876430

RESUMEN

In this contribution we summarize most of the findings reported for the molecular and cellular biology of the physiological inhibitor of the mitochondrial H(+)-ATP synthase, the engine of oxidative phosphorylation (OXPHOS) and gate of cell death. We first describe the structure and major mechanisms and molecules that regulate the activity of the ATP synthase placing the ATPase Inhibitory Factor 1 (IF1) as a major determinant in the regulation of the activity of the ATP synthase and hence of OXPHOS. Next, we summarize the post-transcriptional mechanisms that regulate the expression of IF1 and emphasize, in addition to the regulation afforded by the protonation state of histidine residues, that the activity of IF1 as an inhibitor of the ATP synthase is also regulated by phosphorylation of a serine residue. Phosphorylation of S39 in IF1 by the action of a mitochondrial cAMP-dependent protein kinase A hampers its interaction with the ATP synthase, i.e., only dephosphorylated IF1 interacts with the enzyme. Upon IF1 interaction with the ATP synthase both the synthetic and hydrolytic activities of the engine of OXPHOS are inhibited. These findings are further placed into the physiological context to stress the emerging roles played by IF1 in metabolic reprogramming in cancer, in hypoxia and in cellular differentiation. We review also the implication of IF1 in other cellular situations that involve the malfunctioning of mitochondria. Special emphasis is given to the role of IF1 as driver of the generation of a reactive oxygen species signal that, emanating from mitochondria, is able to reprogram the nucleus of the cell to confer by various signaling pathways a cell-death resistant phenotype against oxidative stress. Overall, our intention is to highlight the urgent need of further investigations in the molecular and cellular biology of IF1 and of its target, the ATP synthase, to unveil new therapeutic strategies in human pathology. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Protones , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Reprogramación Celular , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/genética , Neoplasias/genética , Neoplasias/patología , Fosforilación Oxidativa , Fosforilación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Transducción de Señal
16.
Oncotarget ; 7(1): 490-508, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26595676

RESUMEN

The ATPase Inhibitory Factor 1 (IF1) is an inhibitor of the mitochondrial H+-ATP synthase that regulates the activity of both oxidative phosphorylation (OXPHOS) and cell death. Here, we have developed transgenic Tet-On and Tet-Off mice that express a mutant active form of hIF1 in the hepatocytes to restrain OXPHOS in the liver to investigate the relevance of mitochondrial activity in hepatocarcinogenesis. The expression of hIF1 promotes the inhibition of OXPHOS in both Tet-On and Tet-Off mouse models and induces a state of metabolic preconditioning guided by the activation of the stress kinases AMPK and p38 MAPK. Expression of the transgene significantly augmented proliferation and apoptotic resistance of carcinoma cells, which contributed to an enhanced diethylnitrosamine-induced liver carcinogenesis. Moreover, the expression of hIF1 also diminished acetaminophen-induced apoptosis, which is unrelated to differences in permeability transition pore opening. Mechanistically, cell survival in hIF1-preconditioned hepatocytes results from a nuclear factor-erythroid 2-related factor (Nrf2)-guided antioxidant response. The results emphasize in vivo that a metabolic phenotype with a restrained OXPHOS in the liver is prone to the development of cancer.


Asunto(s)
Regulación hacia Abajo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Fosforilación Oxidativa , Proteínas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetaminofén/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Supervivencia Celular/genética , Expresión Génica , Humanos , Hígado/patología , Hígado/ultraestructura , Neoplasias Hepáticas/genética , Ratones Transgénicos , Microscopía Electrónica , Microscopía Fluorescente , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Cell Rep ; 12(12): 2143-55, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26387949

RESUMEN

The mitochondrial H(+)-ATP synthase synthesizes most of cellular ATP requirements by oxidative phosphorylation (OXPHOS). The ATPase Inhibitory Factor 1 (IF1) is known to inhibit the hydrolase activity of the H(+)-ATP synthase in situations that compromise OXPHOS. Herein, we demonstrate that phosphorylation of S39 in IF1 by mitochondrial protein kinase A abolishes its capacity to bind the H(+)-ATP synthase. Only dephosphorylated IF1 binds and inhibits both the hydrolase and synthase activities of the enzyme. The phosphorylation status of IF1 regulates the flux of aerobic glycolysis and ATP production through OXPHOS in hypoxia and during the cell cycle. Dephosphorylated IF1 is present in human carcinomas. Remarkably, mouse heart contains a large fraction of dephosphorylated IF1 that becomes phosphorylated and inactivated upon in vivo ß-adrenergic stimulation. Overall, we demonstrate the essential function of the phosphorylation of IF1 in regulating energy metabolism and speculate that dephosho-IF1 might play a role in signaling mitohormesis.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias Cardíacas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Animales , Sitios de Unión , Bucladesina/farmacología , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Pruebas de Enzimas , Regulación de la Expresión Génica , Glucólisis/efectos de los fármacos , Glucólisis/genética , Células HCT116 , Humanos , Isoquinolinas/farmacología , Cinética , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Miocardio/citología , Miocardio/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación , Unión Proteica , Proteínas/química , Proteínas/genética , Transducción de Señal , Sulfonamidas/farmacología
18.
EMBO Rep ; 14(7): 638-44, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23722655

RESUMEN

Differentiation of human mesenchymal stem cells (hMSCs) requires the rewiring of energy metabolism. Herein, we demonstrate that the ATPase inhibitory factor 1 (IF1) is expressed in hMSCs and in prostate and colon stem cells but is not expressed in the differentiated cells. IF1 inhibits oxidative phosphorylation and regulates the activity of aerobic glycolysis in hMSCs. Silencing of IF1 in hMSCs mimics the metabolic changes observed in osteocytes and accelerates cellular differentiation. Activation of IF1 degradation acts as the switch that regulates energy metabolism during differentiation. We conclude that IF1 is a stemness marker important for maintaining the quiescence state.


Asunto(s)
Metabolismo Energético , Células Madre Mesenquimatosas/metabolismo , Osteocitos/metabolismo , Proteínas/genética , Células Madre/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Colon/citología , Colon/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Glucólisis , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Osteocitos/citología , Osteogénesis/genética , Fosforilación Oxidativa , Próstata/citología , Próstata/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA